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1 Introduction

To understand some developments of modern Ramsey theory, we must first
explain the meaning behind the terminology. A graph G is a pair of a set
of vertices (denoted by V(G)) and a set of edges (denoted by E(G)), where
each edge connects two different vertices (the edge set can be considered
a set of 2 element subsets of the vertex set). An endpoint of an edge is
one of the two vertices that an edge connects, and an edge is incident to a
vertex v if v is one of the endpoints. An edge-coloring on the graph G is
a function ¢ which assigns each element of E(G) a natural number, where
the natural number assigned is the edge’s color. A complete graph on n
vertices (denoted by K,) is a graph on n vertices such that there exists an
edge between each pair of vertices. A subgraph H of a graph G is a pair
of a subset of the vertices of G’ and a subset of the edges incident to those
vertices. A cycle is a sequence of vertices such that each vertex is connected
to the previous and the next vertex in the sequence, and the only repeated
vertex is the beginning and end vertex. A path is a sequence of vertices such
that there exists an edge connecting each pair of successive vertices, where
each vertex in the sequence is unique.

Ramsey theory has its origins from the work of Frank Ramsey, publishing
a paper in 1930 in which he proved the following theorem. [1]

Theorem 1. For any given inleger c, any given integers ni, ..., ne, there is
a number, R(ni,...,n.), such that if the edges of a complete graph of order
R(n1,...,n.) are colored with ¢ different colors, then for some i between 1
and ¢, it must contain a complete subgraph of order n; whose edges are all
color 1.

In general, we define the Ramsey number of ni,...,n,. as the minimum
number of vertices n such that a complete graph on n vertices will contain
a complete subgraph of n; vertices colored color 1, or a complete subgraph
of ny vertices colored color 2, and so forth.



We observe a special case of Ramsey’s theorem where ¢ = 2, such that
the graph’s edges are colored by two colors (we generally use red and blue to
represent these two colors), wherein we will find either a complete subgraph
of ny vertices which is edge colored only by red, or a complete subgraph of
ng vertices which is edge colored only by blue. We are able to calculate exact
values for R(ny, ...,n.) in two steps: showing that for every edge-coloring of
a I(, we find a K, colored with color 1, or a K, colored with color 2, and
so forth, and then by showing the existence of a coloring of K,,_; which has
no Ky, colored with color 1, or K, colored with color 2, and so forth. A
common introductory example is to show that R(3,3) = 6.

However, further developments in Ramsey theory do not restrict them-
selves to only finding monochromatic complete subgraphs. Instead of looking
for complete subgraphs, we may also look for any other family of graphs.
Other families of graphs include paths or cycles. Additionally, instead of
looking for monochromatic subgraphs, we may instead concern ourselves
with graphs that are known as rainbow, which are edge colorings such that
each edge is colored with a different color. Searching for subgraphs that are
either a rainbow copy of one graph, or a monochromatic copy of another
graph leads us to what is known as Gallai-Ramsey theory.

2 Gallai-Ramsey Numbers

Similar to Ramsey numbers, the Gallai-Ramsey number of a graph is related
to the minimum number of vertices a complete graph must contain such that
when the graph is edge colored by some number of colors, the graph will
always contain a certain monochromatic graph, or a certain rainbow graph.
In terms of mathematical notation, we denote the Gallai-Ramsey number as
gr(G 1 H), where a complete graph of gr, (G : H) vertices edge colored by k
colors will always contain either a rainbow subgraph G or a monochromatic
subgraph . Gallai-Ramsey theory has its origins in a paper published in
1967 by Gallai, in which he proved the following result. [2]

Theorem 2. In any coloring of a complete graph containing no rainbow
triangle, there exists a nontrivial partition (a partition into more than one
part) of the vertices (called a Gallai partition) such that there are at most
two colors on the edges between the parts and only one color on the edges
between each pair of parts.

Due to this result, we define rainbow triangle free colorings as Gallai
colorings. This theorem has proven to be quite useful in proving results
for Gallai-Ramsey numbers where we consider the case of rainbow triangles.
In our research, we will be studying the Gallai-Ramsey number of Gallai
colorings of graphs.



In their recent paper, Hall, Magnant, Ozeki, and Tsugaki presented
strengthened upper bounds on the Gallai-Ramsey numbers when search-
ing for monochromatic paths and cycles. [3] In addition, Faudree, Gould,
Jacobson, and Magnant presented lower bounds for the Gallai-Ramsey num-
bers for monochromatic paths, [4] and Fujita and Magnant presented lower
bounds for the Gallai-Ramsey numbers for monochromatic cycles. [5] These
results combined give the following best known bounds.

Theorem 3. For all integers k and n with k > 1 and n > 2,
(n=1k+n+1<gn(Ks:Co) < (n— 1)k +3n

n2% +1 < gr (K3 : Conyr) < (2871 = 3)nlogn.
For all integers k and n with k > 1 and n > 3,

=52 oo <ol

Using these formulas, we can provide a range for the Gallai-Ramsey
numbers of paths and cycles. Of particular note, we find that for small odd
cycles and k& number of colors, we have the bounds

2" + 1 < gri (K3 : Cy) < (264! — 3)310g 3.

3 Exact Gallai-Ramsey Numbers for Small Odd
Cycles

Although we have formulas to determine bounds on the Gallai-Ramsey num-
ber for the general cases, the precise Gallai-Ramsey number, even for the
simpler cases, is difficult to compute. As an example, we will consider the
case of C3. To show the lower bounds of any kind of Ramsey number, we
can exhibit an edge coloring on a complete graph of n — 1 vertices that does
not satisfy any of the desired conditions; for example, the following coloring
with 3 colors on a complete graph of 10 vertices contains no monochromatic
Cy and no rainbow K3. Thus, grs(K3 : C3) > 10.

In fact, the coloring of Figure 1 can be derived by using Theorem 2. We
can do so in the following way: label the bottom vertex of a Ky 1, and
sequentially label each successive vertex clockwise the next natural number
up to 10. Place the vertices with odd label into one partition, and the
vertices with even label into another. Then each partition has 5 vertices,
and as stated before, since R(3,3) = 6, we can find a 2 coloring of the edges
of each partition which has no monochromatic triangle. Then, color every
edge connecting the two partitions the third color (define this color blue).



Figure 1: A 3 edge coloring of Ky which exhibits no monochromatic or
rainbow triangle

By theorem 2, since this partition exists, this coloring is rainbow triangle
free, and since the subgraph of Ko induced by blue is a bipartite graph,
it contains no odd cycles, thus this coloring is also monochromatic triangle
free. So this coloring demonstrates that gr4(Ks3 : C3) > 10.

In fact, it turns out that gry(K3 : C3) = 11. This is a result due to
Chung and Graham, who proved the following general formula. [6]

Theorem 4.

55/2 41 if k is even
(K3 :Cy) =
gre(Ks : Cy) {S(k—l)/z 44 if k is odd

4 Current Research

In our research, we wish to further develop our knowledge of exact Gallai-
Ramsey numbers for small odd cycles. The case for a cycle of 3 vertices
has already been settled, as shown above by Theorem 4. However, we wish
to find the precise values for further cases, in particular, we would like to
provide a general formula for the Gallai-Ramsey number for cycles of length
7 for edge colorings of k colors. This has proven to be a nontrivial task,
with the only known results being the general bounds outlined in Theorem

3. Given those bounds, we find that, for instance, when colored by three
colors, we find that

9 < gra(Ks3: C7) <39log3 < 43.



This provides us with a starting point for one choice of the number of
colors. In order to show the Gallai-Ramsey number for each case of k colors
and an odd cycle Cy,41 is exactly n, we need to proceed through two steps:
first, we need to show that every k& edge coloring of a K,, contains either
a monochromatic Co,41 or a rainbow triangle. Second, we need to show
that there exists an edge coloring ¢ of K,,_1 such that there exists neither
a monochromatic Cy,;1 nor a rainbow triangle. Completing the first step
demonstrates that gr, (K3 : Ca,41) < n, since the Ramsey number is the min-
imum number of vertices we need to always be able to find certain subgraphs.
Completing the second step demonstrates that gri. (K3 : Coq1) > n—1, since
exhibiting a coloring without the desired subgraphs clearly means that not
every edge coloring of K,,_; satisfies the conditions, so the minimum number
of vertices needed is larger than n — 1. Thus, these inequalities combined
will give us that gry (K3 : Cory1) = n. Although the proof structure is easy
to understand, providing the proofs is anything but trivial, as evidenced by
the fact that the only exact numbers known are those for cycles up to length
6. Providing exact Gallai-Ramsey numbers for eycles of length 7 would thus
be a significant development.
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