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ABSTRACT

The advent of Connectomics has given rise to an array of efforts dedicated towards furthering our
understanding of the brain. In general, these investigations are concerned with discovering patterns in
neural connectivity; hoping to uncover model pathways of neurological behavior. Utilizing the
mainstay of Connectomics, brain connectomes, there exists an opportunity to expose current
abstractions that induce collective comprehensions surrounding the brain. Within this scope, our intent
seeks to establish a joint method; combining the frameworks of Graphical Lasso and Deep Learning
architectures for dynamic hierachical connectome prediction. This entails formulation of an algorithmic
model of neural connectivity that not only considers the pair-wise relations of neurons, but intuitively
takes into account the hierachical structure of organized neural systems i.e. the brain. Specific to the
purview of computational viability, previous experimentation suggests these frameworks yield
measurable improvements in their capacity to interpret neural data as necessary; providing ample
justification of the aforementioned proposal. In practice however, several considerations exist requisite
to the efforts at hand. Of these, a peculiar focus on maintaining scalability and temporal structure
throughout deems critical; as interpretation of high-dimensional data while abstaining from effects of
temporal warping serve as kernels to our schema. Further developments within this framework aim to
maintain efficacies throughout each task within our joint method; feeding time-series activation data of
neurons and approximating higher-order structures of neural connectivity in a computationally efficient
manner. Contingent on our success, the findings provide grounds for an enhancement in further

inspections of neurophysiological phenomena.



PART 1: INTRODUCTION AND BACKGROUND

1.1 OVERVIEW

This proposal details how a joint approach to predicting neural causality (if two neurons are paired) can
arise from merging Graphical Lasso and a novel Deep Learning architecture. With demonstrable
success, the architecture has shown to perform exceedingly well on the task of predicting neural
causality [1]. Likewise, Graphical Lasso (more specifically Structural Graphical Lasso) has had its
share of utility in the realm of inferring brain connectivity from the Allen Developing Mouse Brain
Atlas [2,3]. Acting as a regularization agent, the aim is to integrate Graphical Lasso and this Deep

Learning architecture in order to relegate key feature selection — providing a means to increase

prediction accuracies.

The scope of this problem generally nests itself within the supervised learning paradigm. As will be
mentioned in following sections, a series of ground-truth values for neuron pairs are provided — by
which a model can be learned to identify features unique to pairs of neurons which are causally
connected. This data, as part of a larger effort hosted during the Chal.earn Neural Connectomics

Challenge [4], provides the capability for a multi-layered yet tractable solution.

1.2 NEUROSCIENCE

Though not the center-piece of this project, a formal understanding of several key concepts greatly
helps solidify the intuitions to the approach measured in this project. Of these ideas, one which can go
no further without address is neural causality. This phenomena describes how neurons maintain a

characteristic of causality with other neurons — that is to say, when one neuron fires it affects the



likelihood of another neuron firing [5]. This dependency provides an interesting vantage point by
which macroscopic models of brain activity can be formed: namely brain connectomes. A fairly recent
endeavor by the Human Connectome Project led by the WU-Minn Consortium [6] spurred interest in

ways to effectively generate these connectomes — mappings of neural connectivity in the brain.

Figure 1: Example Brain Connectomes generated by WU-Minn Consortium [7]

The problem can be challenging however due to the sheer amount of connections that any given neuron
has (up to thousands). Nonetheless the approach detailed in following section focuses on the smaller

sub-task of detecting causality between just two neurons.

1.2.1 NEUROPATHOLOGY

Of particular interest to these brain connectomes, as shown in figure 1, are those who study
neuropathological diseases like epilepsy, autism, and Alzheimer's. Often the case for diseased patients
are that the functional connectivity between their brain regions is fundamentally different from healthy
counterparts [8, 9]. Utilization of generated brain connectomes offer a new avenue by which these
diseases can be studied and effectively researched. Additionally, a powerful visualization of these core

differences in brain activity can be readily distinguished among healthy and diseased patients. Though



not the focus of this project, it is relevant to note the future utility and critical application of the

proposed work in generating brain connectomes.

1.3 MACHINE LEARNING

The core proponents of the algorithm developed in this work employ a range of tools in Machine
Learning. Of these, the majority fall under the realm of supervised learning — engaging with a series of
methods in deep learning and artificial neural networks. The gist of these procedures involve a training
process with access to ground-truth values (key distinction to the unsupervised paradigm). In this

project it comes in the form of a test set of neuron pairs by which their causality is readily known.
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Figure 2: Visualization of Neural Network Classification [12]

Within the supervised scope, there are generally two problem types of interest to Machine Learning
researchers: regression and classification. Regression is the process by which future approximations
(generally scalar) are made based on previous trends e.g. stock market prediction [10]. Of specific
interest to this effort is classification, where new observations are identified into a set of categories to
which they likely belong e.g. distinguishing images of cats and dogs. [11] The process as visualized in

figure 2, shows how (in the case of neural networks) a solution space is transformed in successive



layers until it can readily find a line, plane, or hyperplane (dependent on dimensionality of data) by

which categories can be separated.

Neural networks are versatile in their capabilities and as will be discussed in later sections, a variety of
them exist: convolutional, recurrent, and their “deep” derivatives. Each with distinct structural
differences, the general form is again shown by figure 2, with an input layer succeeded by a varied
amount of hidden layers that ultimately feed to an output layer [12]. As mentioned before, these layers
serve to transform the data into a linearly separable space, each layer encoding different features of the
data. Though the simple model of classification in figure 2 provides too crude of a generalization to the
classification process (with regards to this proposal, it is far too simple) it does provide a great measure

by which to understand the core principles underlying this project.



PART 2: LITERATURE REVIEW

2.1 RELEVANT ASPECTS TO BE REVIEWED

To better understand the intuitions behind more advanced concepts utilized in this project, a review of
core literature is pertinent. This review will focus predominantly on the two papers by which the
“joint™ aspect of this endeavor received its name: previous work on a Deep Learning Architecture for
Dynamic Brain Connectome Prediction [1] and Graphical Lasso [2]. A deeper look at the contents of

these papers will provide a clearer understanding of their inherent benefits and compatibility within a

common framework.

2.1.1 DEEP LEARNING ARCHITECTURE FOR BRAIN CONNECTOME PREDICTION
Presented in this paper [1] is an algorithm by which an input of spiking sequences of neurons can be
readily classified as causally connected or not. The key contributions are a dynamically programmed
layer, working in tandem with recurrent and convolutional neural nets, to determine the alignment
between neuronal activations of pair-wise combinations of neurons [1]. Using the same dataset
proposed for this study [4], the deep learning architecture (as depicted in figure 3), was tested along
several other metric algorithms: including Granger Causality, Partial Correlation Statistics, Generalized
Transfer Entropy, and others. Of critical importance is its performance relative to the winner of the
connectivity prediction challenge by which the data was provided — where this architecture bested the
winner's accuracy by a measurable margin. The success of this model provided a strong platform by

which to expand on the architecture, in an attempt to further push detection accuracy: the main aim of

this project.
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Figure 3: Depiction of Deep Learning Architecture

2.1.1.1 ARCHITECTURE BREAKDOWN

The architecture consists of a series of layers, each feeding to the next as shown in figure 3. First, two
neural spiking sequences are received, which are first processed at a convolutional layer. This layer
serves to initially prime and exploit the temporal structure of the input, extracting salient patterns from
the neural spiking sequences. At this point, the data can be sent to a max-pooling layer that down-
samples the initial sequence to provide a more comact, but still robust representation of the input
sequences. This step is crucial in reducing the processing cost of analyzing time-series data as it
essentially strips away initial information in a way that is largely invariant to any warping of temporal
structure — speeding up computation on the sequences. After max-pooling, the data is sent to another
temporal processing unit: the recurrent layer that learns the key features via backpropagation through

time, which encodes valuable features necessary in determining neural causality. Once the temporal



structure is effectively encoded, a dynamically programmed layer can compare the two input sequences
by which the output prediction layer effectively classifies the pair-wise neuron combination as causally

connected or not. This provides a quick generalization of the architecture's classification process.

2.1.2 GRAPHICAL LASSO FOR LEARNING MOUSE BRAIN CONNECTIVITY

This effort provided a method towards generating a graphical model that can effectively perform
inference on mouse brain networks. Its primary contribution, and the one of most interest to this effort,
is the formulation of Graphical Lasso regularization procedure [2]. Motivated by the hierarchical nature
of the brain, this regularization method provides a way to screen large numbers of features present in
neural data and identify those by which classification deems them most relevant. Hence forth, this
ability to distinguish between the pertinent features used in training or building a model for neural

causality prediction provides an interesting opportunity to attempt a segue outside of graphical models

— towards a deep learmning implementation.

2.2 SUMMARY

Both the papers reviewed provided an approach to analyzing connectivity of neural data. From the
results generated by the deep learning architecture, it can be reasonably said that a proper baseline
method is available by which to experiment with modifications via regularization. For this purpose, the
literature reviewed on graphical lasso provides the opportunity to fuse the approaches. Combining the
substantial performance of the deep learning architecture with the feature-selection of graphical lasso

could potentially further improve the performance of the base deep architecture: the primary goal of

this project.



PART 3: METHODOLOGY
The following subsections depict the process by which this project aims to implement and test the joint
method proposed. A hypothesis provides an expectation of the results, and the contributions listed

describe the goals of this effort. Lastly, the process and methods used throughout will be described.

3.1 HYPOTHESIS

A deep learning architecture bolstered by graphical lasso regularization can provide improvements to

the prediction of neural causality via improved feature selection.

3.2 CONTRIBUTIONS

The following are the proposed contributions of this effort:

A joint graphical lasso and deep learning method for dynamic brain connectome prediction.

* Atool by which neural causality can be accurately predicted

3.3 METHODS

This study will be conducted using a MATLAB implementation of the joint method described. Once
finished, the implementation will be trained and then tested alongside the performance metrics
specified in [1], to definitively assess whether an improvement was made by incorporation of graphical

lasso. Concurrent with the original approach, the data to be used will continue to be the ChalLearn

connectomics challenge test set.
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